


Building Amazing GUIs with 
Roact and Rodux

Lucien Greathouse



Who I Am

Lucien Greathouse
LPGhatguy



Agenda

● Lua Mobile Chat
● 3 Big Problems
● Solutions
● Demo
● Q&A



Lua Mobile Chat



Mobile Lua Chat
Product Goals

● Rebuild mobile chat using 
Roblox game engine

● Based on success of Xbox 
and the avatar editor



Mobile Lua Chat Engineering Goals

● Automated testing for Lua
● Improve quality of Lua code company-wide
● Open source!



Key Challenges



Automated Testing

● Automated testing is easy, you just have to do it!
● No automated testing for Lua code at Roblox 😱😱
● Roblox has TestService, but it’s not very ergonomic

● Current state of the art outside Roblox:
• Busted (Lua)
• Mocha/Chai (JavaScript)
• Ginkgo (Go)
• Cargo Test (Rust)



State Management

● Lots of code wants to read/write data
• Networking
• User interaction

● Everything needs to agree on what that data is!
• We use the term “state ownership” to describe this idea

● Popular solutions outside Roblox:
• Redux, MobX
• Angular, WPF



Dynamic UI

● It’s hard to keep data in sync with UI!
● Simple values, like currency, are easy
● Lists and grids of items are hard

Foo
Bar
Baz

Oof
Foo



Major UI Paradigms



Retained Mode UI

● UI represented by persistent objects
● Changes are performed by setting properties

Hello, there! General Kenobi!



Retained Mode UI

Foo
Bar
Baz

Oof
Foo



Immediate Mode UI

● UI represented by code called every frame
● Immediate mode UI is the gold standard
● It can have performance problems!

Hello, there! General Kenobi!



Immediate Mode UI

Foo
Bar
Baz

Oof
Foo



Techniques for UI Outside Roblox

● Scaleform
• Retained-mode Flash UI framework by Autodesk
• Used in Grand Theft Auto V

● React
• Declarative JavaScript UI framework by Facebook
• Used in Battlefield 1



Solutions

● Automated Testing → TestEZ

● State Management → Rodux

● Dynamic UI → Roact



Unit Testing: TestEZ

● Behavior-Driven Development testing framework

● Runs inside Roblox via normal and core scripts

● Also runs inside Lemur, which we use on Travis-CI





State Management: Rodux

● Based on Redux, created by Dan Abramov
● Three principles:

• Single source of truth for all state
• State is read-only
• State is defined by pure functions, known as reducers

● Can be implemented in only ~20 lines of Lua!



Redux in 18 lines



Create a reducer:

Create a store:

Subscribe to
state changes:

Dispatch actions:



Dynamic UI: Roact

● Create components to represent pieces of UI
● Components receive state and return description of UI
● Roact actually updates your UI objects!

Roact tries to emulate immediate mode ergonomics without 
giving up retained mode performance.



Hello, Roact!
Define a handy alias:

Describe our UI:

Make our UI real:



Alias (surprise!):

Component:

Create children:

Combine everything:



Describe data:

Create UI:

Update data and UI:



Resources

https://github.com/Roblox/roact

https://github.com/Roblox/rodux

https://github.com/Roblox/testez

https://github.com/LPGhatguy/rdc-project

DevForum: LPGhatguy

Twitter: @LPGhatguy

https://github.com/Roblox/roact
https://github.com/Roblox/rodux
https://github.com/Roblox/testez
https://github.com/LPGhatguy/rdc-project


Q & A


	Slide Number 1
	Slide Number 2
	Who I Am
	Agenda
	Lua Mobile Chat
	Mobile Lua Chat�Product Goals
	Mobile Lua Chat Engineering Goals
	Key Challenges
	Automated Testing
	State Management
	Dynamic UI
	Major UI Paradigms
	Retained Mode UI
	Retained Mode UI
	Immediate Mode UI
	Immediate Mode UI
	Techniques for UI Outside Roblox
	Solutions
	 Unit Testing: TestEZ
	Slide Number 20
	State Management: Rodux
	Redux in 18 lines
	Slide Number 23
	Dynamic UI: Roact
	Hello, Roact!
	Slide Number 26
	Slide Number 27
	Resources
	Slide Number 29

