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Who I Am

Lucien Greathouse
LPGhatguy



Agenda

● Lua Mobile Chat
● 3 Big Problems
● Solutions
● Demo
● Q&A



Lua Mobile Chat



Mobile Lua Chat
Product Goals

● Rebuild mobile chat using 
Roblox game engine

● Based on success of Xbox 
and the avatar editor



Mobile Lua Chat Engineering Goals

● Automated testing for Lua
● Improve quality of Lua code company-wide
● Open source!



Key Challenges



Automated Testing

● Automated testing is easy, you just have to do it!
● No automated testing for Lua code at Roblox 😱😱
● Roblox has TestService, but it’s not very ergonomic

● Current state of the art outside Roblox:
• Busted (Lua)
• Mocha/Chai (JavaScript)
• Ginkgo (Go)
• Cargo Test (Rust)



State Management

● Lots of code wants to read/write data
• Networking
• User interaction

● Everything needs to agree on what that data is!
• We use the term “state ownership” to describe this idea

● Popular solutions outside Roblox:
• Redux, MobX
• Angular, WPF



Dynamic UI

● It’s hard to keep data in sync with UI!
● Simple values, like currency, are easy
● Lists and grids of items are hard
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Major UI Paradigms



Retained Mode UI

● UI represented by persistent objects
● Changes are performed by setting properties

Hello, there! General Kenobi!



Retained Mode UI
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Immediate Mode UI

● UI represented by code called every frame
● Immediate mode UI is the gold standard
● It can have performance problems!

Hello, there! General Kenobi!



Immediate Mode UI
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Techniques for UI Outside Roblox

● Scaleform
• Retained-mode Flash UI framework by Autodesk
• Used in Grand Theft Auto V

● React
• Declarative JavaScript UI framework by Facebook
• Used in Battlefield 1



Solutions

● Automated Testing → TestEZ

● State Management → Rodux

● Dynamic UI → Roact



Unit Testing: TestEZ

● Behavior-Driven Development testing framework

● Runs inside Roblox via normal and core scripts

● Also runs inside Lemur, which we use on Travis-CI





State Management: Rodux

● Based on Redux, created by Dan Abramov
● Three principles:

• Single source of truth for all state
• State is read-only
• State is defined by pure functions, known as reducers

● Can be implemented in only ~20 lines of Lua!



Redux in 18 lines



Create a reducer:

Create a store:

Subscribe to
state changes:

Dispatch actions:



Dynamic UI: Roact

● Create components to represent pieces of UI
● Components receive state and return description of UI
● Roact actually updates your UI objects!

Roact tries to emulate immediate mode ergonomics without 
giving up retained mode performance.



Hello, Roact!
Define a handy alias:

Describe our UI:

Make our UI real:



Alias (surprise!):

Component:

Create children:

Combine everything:



Describe data:

Create UI:

Update data and UI:



Resources

https://github.com/Roblox/roact

https://github.com/Roblox/rodux

https://github.com/Roblox/testez

https://github.com/LPGhatguy/rdc-project

DevForum: LPGhatguy

Twitter: @LPGhatguy

https://github.com/Roblox/roact
https://github.com/Roblox/rodux
https://github.com/Roblox/testez
https://github.com/LPGhatguy/rdc-project


Q & A
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