


Designing for Performance
Arseny Kapoulkine



Who I Am

Arseny Kapoulkine
zeuxcg



Agenda

● Memory & performance: why should you care?
● Analysis tools
● New & upcoming performance features
● Deep dive: rendering, physics, scripting



Memory & performance: Memory

● Number of bytes used by your game to store game state
● Includes EVERYTHING: objects, textures, Lua tables…
● Measured in megabytes (MB)
● Allowance: hundreds of MB on mobile



Memory & performance: Memory

● If you’re out of memory, the game crashes
● OOM is the largest source of crashes on mobile!



Memory & performance: Join time

● How much time does it take a player to join your game
● Measured in seconds
● "Allowance": 10-20 seconds?

● Median desktop: 4 seconds
● Median mobile: 5 seconds



Memory & performance: Frame time

● How much time does one frame of your game take
● Measured in milliseconds
● "Allowance": 15-30 ms
● Beware spikes!



Analysis tools

Measure Everything



Analysis tools: Performance Stats

● Memory, frame time, network health (soon: ping time)
● At-a-glance “are things okay?” view
● Desktop: Ctrl+F7
● Mobile: Settings -> Performance Stats



Analysis tools: Client/Server memory

● Memory broken down by categories
● Available on client and server (for game owners)
● Caveat: categories vary per platform, measure on device!



Analysis tools: Microprofiler

● Precise frame timing measurement in a timeline view
● Internal engine work + Lua scripts (debug.profilebegin/end)
● Desktop: Ctrl+F6 / Ctrl+P
● Mobile: Settings -> Micro Profiler



Analysis tools: Stopwatch

● The best tool to measure & 
understand join time :(

● Load time is simple(r): a function 
of # of instances/voxels

● Watch out for server delays!



New features

Imagine Faster



New features: Overview

● Memory/performance is a shared responsibility
● You, as a game creator
● Us, as a platform creator

● We try to work on performance so that you don’t have to
● But you have to drive it by giving us feedback



New features: Instancing

● Old part clustering system: “Featherweight” parts (2012)
● Dynamically merge all objects in a region
● 10 MeshParts = 10x memory cost
● Updating any non-CFrame property triggers geometry rebuild

● New part clustering system: instancing (late 2017)
● Rebuilt around capabilities of “modern” GPUs
● 10 MeshParts = 1x + ε memory cost
● Updating any property is fast*



New features: Instancing

● Automatically enabled when HW supports it
● 100% Xbox, 95% Windows/macOS, 90% iOS, 20%* Android

● Already live for CSG & MeshParts
● Will soon be live for other part types
● Usage guidelines

● Disable Lighting.Outlines
● Use Humanoids sparingly



Upcoming features: Level of detail

● Short term (2018)
● Automatic Mesh/CSG part simplification
● On low-end devices: use lower-poly mesh
● On high-end devices: use lower-poly mesh at a distance

● Long term (soon™)
● Model level-of-detail
● Streaming level-of-detail



Upcoming features: Texture transcoding

● 1024x1024 texture
● 32bpp + mipmaps => 5.3 MB
● PNG size is misleading!

● We automatically encode textures into HW specific formats
● No alpha: 4bpp + mipmaps => 0.7 MB
● Alpha: 8bpp + mipmaps => 1.3 MB

● Expected quality degradation: check on device
● We will support correct preview in Studio emulator



Upcoming features: UI caching

● Old UI rendering
● For each visible container (SurfaceGui/ScreenGui)…
● For each descendant Instance…
● Generate geometry to render…
● … and send geometry to GPU

● New UI rendering
● … send geometry to GPU

● Put related UI elements into separate ScreenGUI objects!



Deep dive

Dig
DEEPER



Scripting in depth

● When do you run Lua code?
● Are you using Lua efficiently?
● Are you using Roblox engine efficiently?



Scripting in depth: When?

● Do you NEED to run code every frame?
● Prefer running code infrequently

● E.g. wait() loops with long delay (1+ seconds?)
● Prefer event-based code

● Listen to user input, Touched, etc.
● Avoid infrequent but long running code

● Use wait() to time-slice



Scripting in depth: Heartbeat et.al.

● Heartbeat vs RenderStepped vs Stepped?
● All of these run every frame!



Scripting in depth: Lua

● Not all Lua code is equally fast
● Beware of:

● Creating objects
● Accessing properties too frequently
● Calling methods too frequently

● General Lua performance advice applies!
● E.g. “Lua Performance Tips” by R. Ierusalimschy



Scripting in depth: Roblox APIs

● Instance.new
● Don’t pass “parent” argument to Instance.new
● Don’t use table-based wrappers for Instance.new

● Custom animation engines
● UI Layout objects vs roll-your-own
● Help us help you!



Building in depth: What do I use?

● Terrain
● Basic parts
● CSG
● MeshParts



Building in depth: Terrain

● Peak efficiency per unit of detail
● Automatic level of detail
● Minimum memory cost per voxel
● Fast dynamic updates

● Stable guaranteed performance
● Make sure you need detail!

● Hard to compete with 1 giant part



Building in depth: Terrain guidelines

● Do:
● Use different materials – they cost the same (exc. water)
● Use varied terrain shapes
● Use StreamingEnabled* (future: streaming LOD)

● Don’t:
● Blindly use terrain if your map is enormous

● 20k stud radius is pushing it
● Use 1-voxel thick shell for mountains

● Measure!
● Need around 4 voxels to maintain LOD integrity



Building in depth: Part types

● Basic parts
● Low efficiency per unit of detail
● Can manipulate independently!
● Low-end mobile: target tens of thousands of parts

● … or use Streaming

● CSG parts
● Medium efficiency per unit of detail

● MeshParts
● Good efficiency per unit of detail
● Must know how to Blender



Building in depth: Physics

● Basic parts
● Peak physics performance for single parts
● Large welded clumps are not optimal

● CSG & MeshParts
● Physics performance is identical!
● Use CollisionFidelity

● Box – no collision, or object looks like a block
● Hull – simplified collision, convex
● Default – anything else

● CanCollide=False *only* helps for interactive regions



Building in depth: Rendering

● Basic parts
● Prefer Roblox materials for optimal performance

● CSG parts
● Prefer Roblox materials for optimal performance
● Use reasonably complex CSG parts (dozens of parts in a union)

● MeshParts
● Use Roblox materials or MeshPart.TextureId
● Use reasonably complex meshes

● 1 200-triangle MeshPart is faster than…
● 1 1000-triangle MeshPart is faster than…
● 10 100-triangle MeshParts



Building in depth: Transparency

● Transparency is bad for performance
● Unless .Transparency = 1 ;)
● Merge transparent parts with CSG

● Use Textures & Decals sparingly
● Prefer Roblox materials for performance
● Use MeshPart.TextureId

● Part.Transparency = 1 & Decals/Textures
● Please don’t do this 



Building in depth: What do I use?

● Terrain
● Basic parts
● CSG
● MeshParts

● All of the above!
● MEASURE EVERYTHING



Conclusion

● Use our profiling tools
● Lean on our features for performance
● Don’t hesitate to ask us why X is slow
● Your feedback drives our work



Q & A


	Slide Number 1
	Slide Number 2
	Who I Am
	Agenda
	Memory & performance: Memory
	Memory & performance: Memory
	Memory & performance: Join time
	Memory & performance: Frame time
	Analysis tools
	Analysis tools: Performance Stats
	Analysis tools: Client/Server memory
	Analysis tools: Microprofiler
	Analysis tools: Stopwatch
	New features
	New features: Overview
	New features: Instancing
	New features: Instancing
	Upcoming features: Level of detail
	Upcoming features: Texture transcoding
	Upcoming features: UI caching
	Deep dive
	Scripting in depth
	Scripting in depth: When?
	Scripting in depth: Heartbeat et.al.
	Scripting in depth: Lua
	Scripting in depth: Roblox APIs
	Building in depth: What do I use?
	Building in depth: Terrain
	Building in depth: Terrain guidelines
	Building in depth: Part types
	Building in depth: Physics
	Building in depth: Rendering
	Building in depth: Transparency
	Building in depth: What do I use?
	Conclusion
	Slide Number 36

