ROBLOX DEVELOPER CONFERENCE

Designing for Performance

Arseny Kapoulkine

Who | Am

4
e W =
A e N A
~
|\ v

-~

=

Arseny Kapoulkine
Zzeuxcg

RDC

Memory & performance: why should you care?
Analysis tools

New & upcoming performance features

Deep dive: rendering, physics, scripting

Number of bytes used by your game to store game state
Includes EVERYTHING: objects, textures, Lua tables...
Measured in megabytes (MB)

Allowance: hundreds of MB on mobile

RDC

RDC

If you’re out of memory, the game crashes
OOM is the largest source of crashes on mobile!

Space Game Filtered Devicese

UristMcSparks

Device Crash Rate
iPad mini 16 77%
iPad 2 T6%
iPod touch 5G 63%

iPhone 45 61%

RDC

How much time does it take a player to join your game
Measured in seconds

"Allowance": 10-20 seconds?

Median desktop: 4 seconds
Median mobile: 5 seconds

Memory & performance: Frame time

How much time does one frame of your game take
Measured in milliseconds

"Allowance": 15-30 ms

Beware spikes!

B

RDC

Measure Everything

RDC

Memory, frame time, network health (soon: ping time)
At-a-glance “are things okay?” view

Desktop: Ctrl+F7

Mobile: Settings -> Performance Stats

Mem CPu GPU Sent Recw Phys
550,16 ME L1 1691 ms = 1EEm o= 1.78 ms . 1.15 KBjs 56.56 KB/'s | 1.08 ms

RDC

Memory broken down by categories
Avallable on client and server (for game owners)
Caveat: categories vary per platform, measure on device!

Roblox Developer Console

ClientLog ServerlLog Client Memory Server Scripts Server Stats Server Memory DataStore Buc ﬁ.
- | Memary 194 004
+| CureMemﬂw el [134]353 B
- | PlaceMemaory 34 428
[Animation [0923 —
GraphicsheshParts 0.810
| GraphicsParticles [6.050
GraphicsParts {0.549
| GraphicsSpatialHash o004
GraphicsTerrain 0.502 _
| GraphicsTexture [37a3
ranhire Tavtiira™harartar 0

Analysis tools: Microprofiler

Precise frame timing measurement in a timeline view
Internal engine work + Lua scripts (debug.profilebegin/end)
Desktop: Ctrl+F6 / Ctrl+P

Mobile: Settings -> Micro Profiler

RDC

The best tool to measure &
understand join time :(

Load time is simple(r): a function
of # of instances/voxels

Watch out for server delays!

New features

Imagine Faster

RDC

Memory/performance is a shared responsibility
You, as a game creator
Us, as a platform creator

We try to work on performance so that you don’t have to
But you have to drive it by giving us feedback

RDC

Old part clustering system: “Featherweight” parts (2012)
Dynamically merge all objects in a region
10 MeshParts = 10x memory cost
Updating any non-CFrame property triggers geometry rebuild

New part clustering system: instancing (late 2017)
Rebuilt around capabilities of “modern” GPUs
10 MeshParts = 1x + € memory cost
Updating any property is fast*

RDC

Automatically enabled when HW supports it
100% Xbox, 95% Windows/macOS, 90% 10S, 20%* Android

Already live for CSG & MeshParts
Will soon be live for other part types

Usage guidelines
Disable Lighting.Outlines
Use Humanoids sparingly

RDC

Short term (2018)
Automatic Mesh/CSG part simplification
On low-end devices: use lower-poly mesh
On high-end devices: use lower-poly mesh at a distance

Long term (soon™)
Model level-of-detall
Streaming level-of-detall

RDC

1024x1024 texture
32bpp + mipmaps => 5.3 MB
PNG size is misleading!

We automatically encode textures into HW specific formats
No alpha: 4bpp + mipmaps => 0.7 MB
Alpha: 8bpp + mipmaps => 1.3 MB

Expected quality degradation: check on device
We will support correct preview in Studio emulator

RDC

Old Ul rendering

For each visible container (SurfaceGui/ScreenGui)...
For each descendant Instance...

Generate geometry to render...

... and send geometry to GPU

New Ul rendering
... send geometry to GPU

Put related Ul elements into separate ScreenGUI objects!

Dig
DEEPER

RDC

RDC

When do you run Lua code?
Are you using Lua efficiently?
Are you using Roblox engine efficiently?

Scripting In depth: When?

e Do you NEED to run code every frame?

o Prefer running code infrequently
o E.g. wait() loops with long delay (1+ seconds?)

o Prefer event-based code
e Listen to user input, Touched, etc.

o Avoid infrequent but long running code
o Use wait() to time-slice

Jroc]

Scripting In depth: Heartbeat et.al.

o Heartbeat vs RenderStepped vs Stepped?
o All of these run every frame!

RDC

Not all Lua code is equally fast

Beware of:
Creating objects
Accessing properties too frequently
Calling methods too frequently

General Lua performance advice applies! .
E.g. “Lua Performance Tips” by R. lerusalimschy

Lua

RDC

Instance.new
Don’t pass “parent” argument to Instance.new
Don’t use table-based wrappers for Instance.new

Custom animation engines
Ul Layout objects vs roll-your-own
Help us help you!

&Y Developer

Building in depth: What do | use? Jroc]

Terrain
Basic parts
CSG
MeshParts

Peak efficiency per unit of detall
Automatic level of detall
Minimum memory cost per voxel
Fast dynamic updates

Stable guaranteed performance

Make sure you need detall!
Hard to compete with 1 giant part

RDC

D]e)

Use different materials — they cost the same (exc. water)

Use varied terrain shapes
Use StreamingEnabled* (future: streaming LOD)

Don't:
Blindly use terrain if your map is enormous
20k stud radius is pushing it

Use 1-voxel thick shell for mountains
Measure!
Need around 4 voxels to maintain LOD integrity

O
Ly
i

RDC

RDC

Basic parts .
Low efficiency per unit of detall s e

Can manipulate independently!
Low-end mobile: target tens of thousands of parts

... Or use Streaming ﬂ- T &
CSG parts
Medium efficiency per unit of detall
MeshParts

Good efficiency per unit of detalil
Must know how to Blender

Building in depth: Physics

o Basic parts
o Peak physics performance for single parts
o Large welded clumps are not optimal

o CSG & MeshParts

o Physics performance is identical!

o Use CollisionFidelity
e Box —no collision, or object looks like a block
o Hull — simplified collision, convex
o Default — anything else

o CanCollide=False *only* helps for interactive regions

RDC

Basic parts
Prefer Roblox materials for optimal performance

CSG parts

Prefer Roblox materials for optimal performance
Use reasonably complex CSG parts (dozens of parts in a union)

MeshParts
Use Roblox materials or MeshPart. Textureld

Use reasonably complex meshes
1 200-triangle MeshPart
1 1000-triangle MeshPart
10 100-triangle MeshParts

RDC

Transparency Is bad for performance
Unless .Transparency =1 ;)
Merge transparent parts with CSG

Use Textures & Decals sparingly
Prefer Roblox materials for performance
Use MeshPart. Textureld

Part. Transparency = 1 & Decals/Textures
Please don’t do this ®

Building in depth: What do | use?

Terrain
Basic parts
CSG
MeshParts

All of the above!
o MEASURE EVERYTHING

RDC

Use our profiling tools

Lean on our features for performance
Don’t hesitate to ask us why X is slow
Your feedback drives our work

ROBLOX DEVELOPER CONFEREMNCE

	Slide Number 1
	Slide Number 2
	Who I Am
	Agenda
	Memory & performance: Memory
	Memory & performance: Memory
	Memory & performance: Join time
	Memory & performance: Frame time
	Analysis tools
	Analysis tools: Performance Stats
	Analysis tools: Client/Server memory
	Analysis tools: Microprofiler
	Analysis tools: Stopwatch
	New features
	New features: Overview
	New features: Instancing
	New features: Instancing
	Upcoming features: Level of detail
	Upcoming features: Texture transcoding
	Upcoming features: UI caching
	Deep dive
	Scripting in depth
	Scripting in depth: When?
	Scripting in depth: Heartbeat et.al.
	Scripting in depth: Lua
	Scripting in depth: Roblox APIs
	Building in depth: What do I use?
	Building in depth: Terrain
	Building in depth: Terrain guidelines
	Building in depth: Part types
	Building in depth: Physics
	Building in depth: Rendering
	Building in depth: Transparency
	Building in depth: What do I use?
	Conclusion
	Slide Number 36

